3.65 \(\int \sin ^2(a+b x) (d \tan (a+b x))^{3/2} \, dx\)

Optimal. Leaf size=247 \[ \frac{5 d^{3/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{d \tan (a+b x)}}{\sqrt{d}}\right )}{4 \sqrt{2} b}-\frac{5 d^{3/2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{d \tan (a+b x)}}{\sqrt{d}}+1\right )}{4 \sqrt{2} b}+\frac{5 d^{3/2} \log \left (\sqrt{d} \tan (a+b x)-\sqrt{2} \sqrt{d \tan (a+b x)}+\sqrt{d}\right )}{8 \sqrt{2} b}-\frac{5 d^{3/2} \log \left (\sqrt{d} \tan (a+b x)+\sqrt{2} \sqrt{d \tan (a+b x)}+\sqrt{d}\right )}{8 \sqrt{2} b}+\frac{5 d \sqrt{d \tan (a+b x)}}{2 b}-\frac{\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d} \]

[Out]

(5*d^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[d*Tan[a + b*x]])/Sqrt[d]])/(4*Sqrt[2]*b) - (5*d^(3/2)*ArcTan[1 + (Sqrt[2]*
Sqrt[d*Tan[a + b*x]])/Sqrt[d]])/(4*Sqrt[2]*b) + (5*d^(3/2)*Log[Sqrt[d] + Sqrt[d]*Tan[a + b*x] - Sqrt[2]*Sqrt[d
*Tan[a + b*x]]])/(8*Sqrt[2]*b) - (5*d^(3/2)*Log[Sqrt[d] + Sqrt[d]*Tan[a + b*x] + Sqrt[2]*Sqrt[d*Tan[a + b*x]]]
)/(8*Sqrt[2]*b) + (5*d*Sqrt[d*Tan[a + b*x]])/(2*b) - (Cos[a + b*x]^2*(d*Tan[a + b*x])^(5/2))/(2*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.175975, antiderivative size = 247, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 10, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.476, Rules used = {2591, 288, 321, 329, 211, 1165, 628, 1162, 617, 204} \[ \frac{5 d^{3/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{d \tan (a+b x)}}{\sqrt{d}}\right )}{4 \sqrt{2} b}-\frac{5 d^{3/2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{d \tan (a+b x)}}{\sqrt{d}}+1\right )}{4 \sqrt{2} b}+\frac{5 d^{3/2} \log \left (\sqrt{d} \tan (a+b x)-\sqrt{2} \sqrt{d \tan (a+b x)}+\sqrt{d}\right )}{8 \sqrt{2} b}-\frac{5 d^{3/2} \log \left (\sqrt{d} \tan (a+b x)+\sqrt{2} \sqrt{d \tan (a+b x)}+\sqrt{d}\right )}{8 \sqrt{2} b}+\frac{5 d \sqrt{d \tan (a+b x)}}{2 b}-\frac{\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*x]^2*(d*Tan[a + b*x])^(3/2),x]

[Out]

(5*d^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[d*Tan[a + b*x]])/Sqrt[d]])/(4*Sqrt[2]*b) - (5*d^(3/2)*ArcTan[1 + (Sqrt[2]*
Sqrt[d*Tan[a + b*x]])/Sqrt[d]])/(4*Sqrt[2]*b) + (5*d^(3/2)*Log[Sqrt[d] + Sqrt[d]*Tan[a + b*x] - Sqrt[2]*Sqrt[d
*Tan[a + b*x]]])/(8*Sqrt[2]*b) - (5*d^(3/2)*Log[Sqrt[d] + Sqrt[d]*Tan[a + b*x] + Sqrt[2]*Sqrt[d*Tan[a + b*x]]]
)/(8*Sqrt[2]*b) + (5*d*Sqrt[d*Tan[a + b*x]])/(2*b) - (Cos[a + b*x]^2*(d*Tan[a + b*x])^(5/2))/(2*b*d)

Rule 2591

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> With[{ff = FreeFactors[Ta
n[e + f*x], x]}, Dist[(b*ff)/f, Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, (b*Tan[e + f*x])/f
f], x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sin ^2(a+b x) (d \tan (a+b x))^{3/2} \, dx &=\frac{d \operatorname{Subst}\left (\int \frac{x^{7/2}}{\left (d^2+x^2\right )^2} \, dx,x,d \tan (a+b x)\right )}{b}\\ &=-\frac{\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}+\frac{(5 d) \operatorname{Subst}\left (\int \frac{x^{3/2}}{d^2+x^2} \, dx,x,d \tan (a+b x)\right )}{4 b}\\ &=\frac{5 d \sqrt{d \tan (a+b x)}}{2 b}-\frac{\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}-\frac{\left (5 d^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (d^2+x^2\right )} \, dx,x,d \tan (a+b x)\right )}{4 b}\\ &=\frac{5 d \sqrt{d \tan (a+b x)}}{2 b}-\frac{\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}-\frac{\left (5 d^3\right ) \operatorname{Subst}\left (\int \frac{1}{d^2+x^4} \, dx,x,\sqrt{d \tan (a+b x)}\right )}{2 b}\\ &=\frac{5 d \sqrt{d \tan (a+b x)}}{2 b}-\frac{\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}-\frac{\left (5 d^2\right ) \operatorname{Subst}\left (\int \frac{d-x^2}{d^2+x^4} \, dx,x,\sqrt{d \tan (a+b x)}\right )}{4 b}-\frac{\left (5 d^2\right ) \operatorname{Subst}\left (\int \frac{d+x^2}{d^2+x^4} \, dx,x,\sqrt{d \tan (a+b x)}\right )}{4 b}\\ &=\frac{5 d \sqrt{d \tan (a+b x)}}{2 b}-\frac{\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}+\frac{\left (5 d^{3/2}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{d}+2 x}{-d-\sqrt{2} \sqrt{d} x-x^2} \, dx,x,\sqrt{d \tan (a+b x)}\right )}{8 \sqrt{2} b}+\frac{\left (5 d^{3/2}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{d}-2 x}{-d+\sqrt{2} \sqrt{d} x-x^2} \, dx,x,\sqrt{d \tan (a+b x)}\right )}{8 \sqrt{2} b}-\frac{\left (5 d^2\right ) \operatorname{Subst}\left (\int \frac{1}{d-\sqrt{2} \sqrt{d} x+x^2} \, dx,x,\sqrt{d \tan (a+b x)}\right )}{8 b}-\frac{\left (5 d^2\right ) \operatorname{Subst}\left (\int \frac{1}{d+\sqrt{2} \sqrt{d} x+x^2} \, dx,x,\sqrt{d \tan (a+b x)}\right )}{8 b}\\ &=\frac{5 d^{3/2} \log \left (\sqrt{d}+\sqrt{d} \tan (a+b x)-\sqrt{2} \sqrt{d \tan (a+b x)}\right )}{8 \sqrt{2} b}-\frac{5 d^{3/2} \log \left (\sqrt{d}+\sqrt{d} \tan (a+b x)+\sqrt{2} \sqrt{d \tan (a+b x)}\right )}{8 \sqrt{2} b}+\frac{5 d \sqrt{d \tan (a+b x)}}{2 b}-\frac{\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}-\frac{\left (5 d^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{d \tan (a+b x)}}{\sqrt{d}}\right )}{4 \sqrt{2} b}+\frac{\left (5 d^{3/2}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{d \tan (a+b x)}}{\sqrt{d}}\right )}{4 \sqrt{2} b}\\ &=\frac{5 d^{3/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{d \tan (a+b x)}}{\sqrt{d}}\right )}{4 \sqrt{2} b}-\frac{5 d^{3/2} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{d \tan (a+b x)}}{\sqrt{d}}\right )}{4 \sqrt{2} b}+\frac{5 d^{3/2} \log \left (\sqrt{d}+\sqrt{d} \tan (a+b x)-\sqrt{2} \sqrt{d \tan (a+b x)}\right )}{8 \sqrt{2} b}-\frac{5 d^{3/2} \log \left (\sqrt{d}+\sqrt{d} \tan (a+b x)+\sqrt{2} \sqrt{d \tan (a+b x)}\right )}{8 \sqrt{2} b}+\frac{5 d \sqrt{d \tan (a+b x)}}{2 b}-\frac{\cos ^2(a+b x) (d \tan (a+b x))^{5/2}}{2 b d}\\ \end{align*}

Mathematica [A]  time = 0.549549, size = 113, normalized size = 0.46 \[ \frac{d \csc (a+b x) \sqrt{d \tan (a+b x)} \left (17 \sin (a+b x)+\sin (3 (a+b x))+5 \sqrt{\sin (2 (a+b x))} \sin ^{-1}(\cos (a+b x)-\sin (a+b x))-5 \sqrt{\sin (2 (a+b x))} \log \left (\sin (a+b x)+\sqrt{\sin (2 (a+b x))}+\cos (a+b x)\right )\right )}{8 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*x]^2*(d*Tan[a + b*x])^(3/2),x]

[Out]

(d*Csc[a + b*x]*(17*Sin[a + b*x] + 5*ArcSin[Cos[a + b*x] - Sin[a + b*x]]*Sqrt[Sin[2*(a + b*x)]] - 5*Log[Cos[a
+ b*x] + Sin[a + b*x] + Sqrt[Sin[2*(a + b*x)]]]*Sqrt[Sin[2*(a + b*x)]] + Sin[3*(a + b*x)])*Sqrt[d*Tan[a + b*x]
])/(8*b)

________________________________________________________________________________________

Maple [C]  time = 0.159, size = 676, normalized size = 2.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(b*x+a)^2*(d*tan(b*x+a))^(3/2),x)

[Out]

-1/8/b*2^(1/2)*(cos(b*x+a)-1)*(-5*I*sin(b*x+a)*EllipticPi(((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2),1/2-1/2
*I,1/2*2^(1/2))*((cos(b*x+a)-1)/sin(b*x+a))^(1/2)*((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+
sin(b*x+a))/sin(b*x+a))^(1/2)+5*I*sin(b*x+a)*EllipticPi(((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2),1/2+1/2*I
,1/2*2^(1/2))*((cos(b*x+a)-1)/sin(b*x+a))^(1/2)*((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+si
n(b*x+a))/sin(b*x+a))^(1/2)+10*sin(b*x+a)*((cos(b*x+a)-1)/sin(b*x+a))^(1/2)*((1-cos(b*x+a)+sin(b*x+a))/sin(b*x
+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*EllipticF(((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2)
,1/2*2^(1/2))-5*sin(b*x+a)*EllipticPi(((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2),1/2-1/2*I,1/2*2^(1/2))*((co
s(b*x+a)-1)/sin(b*x+a))^(1/2)*((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+
a))^(1/2)-5*sin(b*x+a)*EllipticPi(((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((cos(b*
x+a)-1)/sin(b*x+a))^(1/2)*((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^
(1/2)-2*cos(b*x+a)^3*2^(1/2)+2*cos(b*x+a)^2*2^(1/2)-8*cos(b*x+a)*2^(1/2)+8*2^(1/2))*cos(b*x+a)*(cos(b*x+a)+1)^
2*(d*sin(b*x+a)/cos(b*x+a))^(3/2)/sin(b*x+a)^5

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2*(d*tan(b*x+a))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2*(d*tan(b*x+a))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)**2*(d*tan(b*x+a))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \tan \left (b x + a\right )\right )^{\frac{3}{2}} \sin \left (b x + a\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^2*(d*tan(b*x+a))^(3/2),x, algorithm="giac")

[Out]

integrate((d*tan(b*x + a))^(3/2)*sin(b*x + a)^2, x)